On multistability of delayed genetic regulatory networks with multivariable regulation functions.

نویسندگان

  • Wei Pan
  • Zidong Wang
  • Huijun Gao
  • Yurong Li
  • Min Du
چکیده

Many genetic regulatory networks (GRNs) have the capacity to reach different stable states. This capacity is defined as multistability which is an important regulation mechanism. Multiple time delays and multivariable regulation functions are usually inevitable in such GRNs. In this paper, multistability of GRNs is analyzed by applying the control theory and mathematical tools. This study is to provide a theoretical tool to facilitate the design of synthetic gene circuit with multistability in the perspective of control theory. By transforming such GRNs into a new and uniform mathematical formulation, we put forward a general sector-like regulation function that is capable of quantifying the regulation effects in a more precise way. By resorting to up-to-date techniques, a novel Lyapunov-Krasovskii functional (LKF) is introduced for achieving delay dependence to ensure less conservatism. New conditions are then proposed to ensure the multistability of a GRN in the form of linear matrix inequalities (LMIs) that are dependent on the delays. Our multistability conditions are applicable to several frequently used regulation functions especially the multivariable ones. Two examples are employed to illustrate the applicability and usefulness of the developed theoretical results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monostability and Multistability of Genetic Regulatory Networks with Different Types of Regulation Functions

Monostability and multistability are proven to be two important topics in synthesis biology and system biology. In this paper, both monostability and multistability are analyzed in a unified framework by applying control theory and mathematical tools. The genetic regulatory networks (GRNs) with multiple time-varying delays and different types of regulation functions are considered. By putting f...

متن کامل

Multistability of genetic regulatory networks

5 Multistability is found to be an important recurring theme in synthesis biology. In this article, the multistability analysis problem is investigated by applying control theory and mathematical tools. Both the modelling and analysis issues are discussed. Specifically, the genetic regulatory networks (GRNs) with multistability are modelled as switched systems with interval time-varying delays ...

متن کامل

H∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks

Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...

متن کامل

Robust stability of uncertain genetic regulatory networks with multivariable regulation functions

This paper investigates robust stability of uncertain genetic regulatory networks (GRNs). It is assumed that the uncertainties are in the form of a parameter vector that determines the coefficients of the model via given functions. And the novel multivariable regulation functions are introduced here to describe the underlying relationship between different biochemical substance. Firstly, it is ...

متن کامل

Multistability and delayed recurrent loops.

Multistable dynamical systems have important applications as pattern recognition and memory storage devices. Conditions under which time-delayed recurrent loops of spiking neurons exhibit multistability are presented. Our results are illustrated on both a simple integrate-and-fire neuron and a HodgkinHuxley-type neuron, whose recurrent inputs are delayed versions of their output spike trains. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mathematical biosciences

دوره 228 1  شماره 

صفحات  -

تاریخ انتشار 2010